Schauder estimates for degenerate Monge–Ampère equations and smoothness of the eigenfunctions

نویسندگان

  • Nam Q. Le
  • Ovidiu Savin
  • O. Savin
چکیده

We obtainC2,β estimates up to the boundary for solutions to degenerate Monge–Ampère equations of the type det D2u = f in , f ∼ distα(·, ∂ ) near ∂ , α > 0. As a consequence we obtain global C∞ estimates up to the boundary for the eigenfunctions of the Monge–Ampère operator (det D2u)1/n on smooth, bounded, uniformly convex domains in Rn .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

Regularity of Subelliptic Monge-ampère Equations in the Plane

We establish a C∞ regularity result for C1,1 solutions of degenerate Monge-Ampère equation in R2, under the assumption that the trace of the Hessian is bounded from below.

متن کامل

Global W2, p estimates for solutions to the linearized Monge–Ampère equations

In this paper, we establish global W 2,p estimates for solutions to the linearizedMonge–Ampère equations under natural assumptions on the domain, Monge– Ampère measures and boundary data. Our estimates are affine invariant analogues of the global W 2,p estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin’s global W 2,p estimates for th...

متن کامل

Stability of Bounded Solutions for Degenerate Complex Monge-Ampère Equations

We show a stability estimate for the degenerate complex Monge-Ampère operator that generalizes a result of Ko lodziej [11]. In particular, we obtain the optimal stability exponent and also treat the case when the right hand side is a general Borel measure satisfying certain regularity conditions. Moreover our result holds for functions plurisubharmonic with respect to a big form generalizing th...

متن کامل

Local Solvability of Degenerate Monge-ampère Equations and Applications to Geometry

We consider two natural problems arising in geometry which are equivalent to the local solvability of specific equations of Monge-Ampère type. These are: the problem of locally prescribed Gaussian curvature for surfaces in R3, and the local isometric embedding problem for two-dimensional Riemannian manifolds. We prove a general local existence result for a large class of degenerate Monge-Ampère...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016